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Nonlinear growth of periodic patterns
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We study the growth of a periodic pattern in one dimension for a model of spinodal decomposition, the
Cahn-Hilliard equation. We particularly focus on the intermediate region, where the nonlinearity cannot be
neglected anymore, and before the coalescence dominates. The dynamics is captured through the standard
technique of a solubility condition performed over a particular family of quasistatic solutions. The main result
is that the dynamics along this particular class of solutions can be expressed in terms of a simple ordinary
differential equation. The density profile of the stationary regime found at the end of the nonlinear growth is
also well characterized. Numerical simulations correspond satisfactorily to the analytical results through three
different methods and asymptotic dynamics are well recovered, even far from the region where the approxi-
mations hold.
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I. INTRODUCTION

When a homogeneous system departs suddenly f
equilibrium, the fluctuations around the initial ground sta
are linearly amplified, for example, the homogeneous ph
separates spontaneously into two different more stable st
The interfaces that delimit the domains of each phase for
complex pattern and interact with each other, giving rise
interface dynamics or pattern formation. Its results can b
slow process of coarsening that ends up with only two w
separated domains. This process of first-order phase tra
tion arises particularly for binary mixtures@1# or alloys @6#,
vapor condensation@2#, ferromagnetic Ising model@3# or
thin films of copolymers@4#.

For the most general, first-order transitions initiate in tw
different ways: first, a nucleation process, where the hom
enous state is put suddenly in a metastable configuration,
an energy barrier has to be crossed before the transition
pears. This is the typical dynamics of cavitation, for instan
see Ref.@5#. The other method is spinodal decompositi
where the system leads in a linearly unstable configurat
such is the situation that we will study here. In this lat
case, three different regimes are identified in the dynam
first the linear instability of the homogenous phase devel
from the fluctuations, leading to the creation of a modulat
of the order parameter at a well-defined length scale.
modulations grow exponentially with time as long as t
nonlinearities are negligible. This stage is very short a
results mainly in the selection of a particular length scale
the process. Nonlinearities rapidly slow down the growth
the modulation resulting in an interface pattern composed
well-defined interfaces delimiting domains containing one
the two stable phases. Remarkably, this intermediate s
conserves quite perfectly the modulation width, so that
resulting pattern is of almost the same length scale as the
selected initially. Finally, a slow, self-inhibiting dynamic
dominates the last stage of the process, due to the inte
tions between the interfaces. The different regions of e
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phase coalesce in the so-called Ostwald ripening where
number of domains diminishes, whereas their typical s
increases. The asymptotic state is decomposed into two
mains, one for each phase. This coarsening dynamics
fact present already from the beginning of the spinodal
composition; however, as we will discuss below, its influen
on the two first stages can be often neglected.

Hillert @6#, Cahn and Hilliard@7# have proposed a mode
equation for a scalar order parameter describing the segr
tion for a binary mixture. This model, known as the Cah
Hilliard equation ~CH hereafter!, belongs to the ModelB
class in Hohenberg and Halperin’s classification@3#. Indeed,
different models of phase separation have been propo
depending on whether the order parameter is a scalar
vector, or whether it is or is not a conserved quantity~for a
review see Refs.@3,8,9#!. The CH equation is in fact a stan
dard model for phase transition with conserved quanti
and has applications to phase transition in liquid cryst
@10#, segregation of granular mixtures in a rotating dru
@11#, or formation of sand ripples@12,13#. It is a partial dif-
ferential equation to which a conservative noise is added
account for thermal fluctuations@14#.

Figure 1 shows snapshots of the numerical simulation
the CH dynamics which represents the full phase transi
process after a quench in temperature. In that case, the
fluctuations have been omitted in the dynamics, but w
present in the initial conditions. The three main stages of
spinodal decomposition described above are clearly dis
guished: first, from Figs. 1~a! and 1~b!, we observe the se
lection of a typical length scale for the modulations, then
nonlinear growth and its saturation from Figs. 1~b! and 1~c!.
We note that the number of peaks has been almost conse
between these two configuration; on the other hand the
plitude of the modulation has now reached almost
asymptotic value and will not change significantly in th
further dynamics. On the contrary, the coarsening dynam
is observed between Figs. 1~c! and 1~d! and the typical
length of the pattern is increasing.
©2002 The American Physical Society08-1
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Note that in the numerical experiments, contrary to a
alistic experience, we go instantaneously from one temp
ture to another~ideal quench!. And we will see in the fol-
lowing that the system will evolve in a smoother way in t
sense that, due to finite diffusion process, it will not insta
taneously reach the thermodynamical state associated
the temperature of the quench.

In this paper, we will focus on the one-dimensional C
equation and our aim is to offer a consistent description
the pattern formation, corresponding to the intermedi
~nonlinear! regime. We will obtain a simple ordinary differ
ential equation describing the dynamics along a family
quasistatic periodic solutions. We recover the linear reg
for short times, and correctly reproduce the saturation of
second~nonlinear! stage, in the case of small initial pertu
bations, in the region close to the critical point~i.e., for a
symmetric mixture!. These results are valid in the lim
where thermal fluctuations and coarsening processes ar
glected. We will discuss these important assumptions
show how the resulting ordinary equation depends on
wavelength of the periodic solution.

As mentioned above, numerous models for phase tra
tion have been proposed; an important activity has been
voted to the description of their dynamics, using both sta
tical methods and numerical simulations~for a review see
Ref. @15#!. However, these works mainly concentrate on
late stage of the spinodal decomposition where the coar
ing dynamics dominates and exhibits ‘‘dynamical scaling
the dynamics presents a self-similar evolution where ti
enters only through a length scaleL(t), associated with a

FIG. 1. Time evolution of the order parameterF(x,t) for «5
21, dx50.1227.~a! Initial conditions att50 are taken randomly
with a very low amplitude (531024). ~b! At time t515, the am-
plitude of the modulation has decreased, while only long wa
length contributions are still present. The small scale perturbat
have been damped by the CH dynamics.~c! At t5225, the modu-
lation has almost reached its final amplitude, keeping roughly
same number of peaks as before.~d! At t51800, we observe tha
the number of domains has decreased from the coarsening dy
ics.
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typical length of the domains or the rate of decay of t
inhomogeneities. For instance, scaling arguments and st
ity criteria give the lawL(t);t1/3 for spatial dimensions
greater than 1 and a logarithmic behavior for one dimens
in the case of the CH equation@15#.

In this paper, by spinodal decomposition, we refer to
first two stages only, excluding the coarsening dynamics
the third stage.

Only little is known experimentally about these two r
gimes of the dynamics: indeed, they are too brief and the
fore very hard to capture. However, these stages were
served in a recent experiment on a two-dimensio
demixion of copolymer@4# which motivated our work, since
it shows the need for a better understanding of the dynam
before the coalescence. While the linearized theory give
full understanding of the first stage, the second stage
phase separation, which concerns the saturation of
growth through the nonlinearity, appears to have been
studied. There exist numerical attempts to provide desc
tions of the saturation of the profile up to its stationary
gime, using, for example, a concentration dependant di
sion coefficient @16# D5DoF(12F), which leads to a
modified Kuramoto-Shivashinski equation and enables
to have a saturation of growth. Here, on the contrary,
work with a constant diffusion coefficient: the nonlineari
will only come from the usualF4 term of the Landau free
energy.

The paper is organized as follows: First we present a b
review of general properties of phase segregations and o
CH model, mainly to fix the notation. We will reproduc
briefly the original derivation by Cahn and Hilliard, and w
will restrict ourselves to the one-dimensional case. In S
III, we present the different assumptions of our calculatio
Numerical simulations are used to determine the role of
noise and the influence of the coarsening in the early dyn
ics. Then, in Sec. IV we focus on interfaces; in particular,
will exhibit a two-parameter family of solutions, specific o
the one-dimensional case, the so-called soliton lattice.
nally in Sec. V, we will make use of the solvability criterio
in order to select the dynamical evolution of the density p
file among a selected ‘‘ansatz’’ solution. Eventually, we co
pare these results with numerical studies of the full CH d
namics shown at the end. We conclude with a discussion
possible extensions of this work.

II. THE CAHN-HILLIARD MODEL

The Cahn-Hilliard theory is a modified diffusion equatio
it is a continuous model, which reads, in its dimensionle
form,

]F

]t
~r ,t !5“

2S «

2
F12F32“

2F D . ~1!

Herer andt represent the position vector and the time, t
vectors being noted with bold fonts.F is the order param-
eter, a real number; for instance, it can correspond to
dimensionless magnetization in the Ising ferromagnet, to
fluctuation of density of a fluid around its mean value duri

-
s

e

m-
8-2



o

-
e

er
he
n
n
fo

-
o

is
y

pa

of

n

en

le

s

n

ric
ee

b
em
th

e

has
n-
ean
el,
, is
isy
e
tem

al
low

the
a-
ed

a
be

r

-

of
e
a-

on,

s
b-

ort
r is

rge,
ial
the
ro-
ly
tor

NONLINEAR GROWTH OF PERIODIC PATTERNS PHYSICAL REVIEW E66, 036308 ~2002!
a phase separation or to the concentration of one of the c
ponents of a binary solution in some region aroundr . D is
the diffusion constant and« is the dimensionless control pa
rameter of the system; it is often identified with the reduc
temperature@«5(T2Tc)/Tc , whereTc is the critical tem-
perature of the phase transition#. This equation, first derived
by Cahn and Hilliard@7#, has also been retrieved by Lang
@17# from microscopic considerations. As mentioned, t
~CH! equation does not account for thermal fluctuatio
present in the system. These can be added through a La
vin force, which integrates in the Fokker-Planck equation
the probability distribution ofF(t) @17#. However, as ex-
plained in Refs.@7,14,9#, the thermal fluctuations can equiva
lently be taken into account through a random noise term
the right hand side~rhs! of Eq. ~1!. Thus, the CH equation
reads, in its more general form,

]F

]t
~r ,t !5“

2S «

2
F12F32“

2F1z~r ,t ! D , ~2!

wherez is a white noise of norm unity, whose amplitude
proportional to the square root of the temperature of the s
tem.

The CH model is a conservative model for the order
rameterF. Indeed, it can be written as

]F

]t
52“• j ,

where j is the current associated withF. Moreover, this
current obeys the standard law related to the gradient
so-called chemical potentialm ( j52“m). For CH model,
m is itself defined as the functional derivative of a free e
ergy F, through

m5
dF

dF
,

with F being, in that case, the usual Landau-Ginzburg d
sity

F5
1

2 F ~“F!21
«

2
F21F4G .

The homogeneous stationary solutions for the noise
CH equation are extrema of the effective potentialV(F)
5«F21F4. For positive«, there is only one homogenou
solutionF50, which is linearly stable; for negative«, the
stationary solutionF50 undergoes a pitchfork bifurcatio
and three stationary solutions exist.F50 is still a stationary
solution, but it is now linearly unstable; two other symmet
solutionsF56A2«/2 are stable and have the same fr
energyF52«2/32.

Thus, a first-order transition can be experienced
quenching the system suddenly from a positive reduced t
perature« to a negative one. Spinodal decomposition is
resulting dynamics. Since for all positive« the system is
described byF50, we only have to study the case where w
start att50 with F50 and a negative«. This is what was
03630
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shown in Fig. 1 in one space dimension, where the noise
been omitted except for the initial condition, where it co
sists of a random noise of a small amplitude around the m
value ^F&50. This can be justified, since the noise lev
being proportional to the square root of the temperature
higher before the quench than after. Thus, taking a no
initial condition and omitting the noise further on can b
interpreted as neglecting the noise of the quenched sys
compared to the residual noise coming from the ‘‘hot’’ initi
temperature. However, we will discuss more precisely be
the influence of the noise in the quenched phase.

When the equation is studied for a constant«, via a res-
caling ofF ~asA2«F), positionr ~asr /A2«) and time~as
t/u«u2), we observe that we could restrict the dynamics to
case«521. However, since we will later on compare st
tionary solutions of the CH model with a different reduc
temperature, we will continue to write the equation with
given «, keeping in mind that the dynamics can always
rescaled to the case«521.

The stability of the solutionF50 can be studied by lin-
earizing Eq.~1! aroundF50 ~i.e., neglecting the nonlinea
term F3); consideringF as a sum of Fourier modes,

F~r ,t !5(
q

fqe
iq"r1st,

wherefq is the Fourier coefficient att50, we obtain that
the amplification factors(q) satisfies

s~q!52S q21
«

2Dq2.

It shows immediately thatF50 is linearly stable for«.0
while a band of Fourier modes are unstable for negative«,
sinces(q).0 for 0,q,A(2«/2). Moreover, the most un
stable mode~wheres is maximal! is for qm5A2«/2~with
sm5«2/16). We can anticipate that this wave number
maximum amplification factor will dominate the first stag
of the dynamics; in particular, it explains why the modul
tions appear at length scales close tolm52p/qm , the wave
length associated withqm . Indeed, we show in Fig. 2 the
time evolution of the usual structure factor in one dimensi

S~q!5F̂~q!F̂~q!* ,

whereF̂ is the Fourier transform of the fieldF (F̂* stand-
ing for its complex conjugate!. We have taken the noiseles
CH equation with random initial conditions; the curve is o
tained through an average over 100 initial conditions.

The different regimes are again well identified: at sh
times we see that the modulations whose wave numbe
close toqm grow rapidly from the white noise, while the
fluctuations forq.A2qm for which the amplification factor
is negative are damped. Then, higher wave numbers eme
which correspond roughly to harmonics mode of the init
modulations. It corresponds to the intermediate stage of
dynamics, where the single-mode approximation of the p
files is not valid any more and the dynamics is in a high
nonlinear regime. Notice, however, that the structure fac
8-3
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SIMON VILLAIN-GUILLOT AND CHRISTOPHE JOSSERAND PHYSICAL REVIEW E66, 036308 ~2002!
keeps its peak located aroundqm ; as we will discuss below
it is indicating that the number of domains stays almost
changed during this regime. Later on, interfaces separa
each domain are formed and interact only through coa
cence dynamics:S(q) changes slowly through a self-simila
process~see Ref.@17#! and the peak of the function wil
slowly move to smaller wave numbers.

III. AN ADIABATIC ANSATZ

Our analytic method will rely on the assumption that t
intermediate region is approximated through the growth o
periodic modulation solution of the noiseless CH equati
we need therefore to discuss how this approach is releva
the general case where noise is present and where the c
ening of the nonperiodic pattern acts. Indeed, as it can
seen in Fig. 2, the coalescence, roughly characterized by
evolution of the position of the peak of the structure fun
tion, does not appear to influence the dynamics before a
hundreds of units of time. At those times, the intermedi
regime has ended and the modulated pattern is formed. M
precisely, Fig. 3 shows the typical mean width of the patt
as a function of time for the same conditions as Fig. 2; a
a transient behavior~until aboutt550) where the size of the
pattern is dominated by the initial conditions combined w
the linear theory of the CH model, we observe the interm
diate regime~for t between 50 and 200 roughly!. In particu-
lar, for this regime, we note that the average size of

FIG. 2. The structure factorS(q) as a function of the wave
numberq for different timest50,50, 100, 150, andt5500 time
units; the higher the peaks are, the larger the time. The curves a
average over 100 initial conditions taken as a random noise of
plitude 531024, the discretization is over 4096 grid points with th
grid spacedx50.6, and«521. At t50, we observe the flat spec
trum of the white noise. Fort550, the spectrum reflects the amp
fication factor: the peaks of the factor are located atqm50.5 while
for all the modesq.A2 the initial noise has been damped. Then
t5100 andt5150 we observe the formation of higher harmon
but the peaks of the structure factor stay aroundqm . However, at
t5500, the coarsening of the solution has begun since the m
mum of S(q) is now at a larger wavelength.
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modulation islm , with a deviation of less than 1% from th
value predicted by the linear theory. It does not mean t
each modulation has a length scale oflm , but more pre-
cisely that the distribution of the modulation length is ce
tered aroundlm , as can be seen from the structure fac
~see Fig. 2!. Moreover, it suggests that the growth of ea
modulation is achieved at constant length scale, determ
by the initial linear instability and thus centered aroundlm .
At t around 200, the growth of the modulation is saturate~as
can be seen from Fig. 1! and the coalescence dominates t
future dynamics: the length scale of the structures sligh
increases with time. The inset of Fig. 3 shows equivalen
the typical wave length of the modulations for the CH mod
in two spatial dimensions; it shows again the same plat
that is in favor of the pattern growth at a constant size.

Thus, we have shown that the coalescence due to the
periodic pattern selected at short time can be neglected
ing the growth of the modulations. We need also to quan
the influence of the noise during the dynamics: until now,
have simplified it to the initial conditions that then induce
nonperiodic initial pattern sufficient to characterize the ge
eral features of the spinodal decomposition. Moreover,
have shown that the growth of the modulation during t
intermediate regime can be considered to occur at cons
length ~centered aroundlm) for each modulation. But
strictly speaking, noise is always present in the dynam
and, in addition to feeding the linear instability of the h
mogenous solution (F50) for short time, it generates a sys
tematic seed of perturbations to the quasiperiodic pattern
can therefore disturb this apparent frozen dynamics at c
stant size. Figure 4 characterizes its effect through the e
lution of the mean length of the modulation for differe
noise levels. Each curve presents the same behavior,
sient dynamics that selects a length scale of the order oflm ,
then a plateau regime~beginning aroundt550), which cor-
responds to the nonlinear growth, followed by a coalesce

an
-

i-

FIG. 3. The ratio between the mean length of the modulati
and the most amplified wavelengthlm52p/qm as a function of
time, for the same conditions as in Fig. 2. The inset shows a sim
curve in two space dimensions, obtained by computing the m
wave number as a function of time, over ten initial conditions.
8-4
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NONLINEAR GROWTH OF PERIODIC PATTERNS PHYSICAL REVIEW E66, 036308 ~2002!
dynamics. We observe that the length of the plateau reg
on which we are focusing, depends strongly on the no
level. In particular, for low noise levels, the growth of th
modulation seems to occur at the constant lengthlm , during
a long period aftert550. But, the higher the noise level, th
shorter is this plateau. The noise stimulates the coalesc
process, which interferes more with the pattern during
intermediate regime@2#. For noise levels higher than 1024,
the growth regime cannot be differentiated anymore from
coalescence dynamics and in such cases, our assumpti
growth at a constant scale would no longer be valid.

In conclusion, we can consider that, for low enough no
level, the nonlinear growth of the modulations is made a
constant length scale and that the noise has a very w
influence on the dynamics of the two first stages.

Taking advantage of this observation, we can simplify
particular study of the second stage of the dynamics,
nonlinear saturation. The aim of this paper is therefore
present a detailed calculation for the growth of a perio
modulation of constant size, for the noiseless~CH! equation
~1! in one spatial dimension for a fixed temperature«0.

However, we hope that this approach is valid also in
limit of the small noise levels, where the growth of ea
modulation appears to be unperturbed. Although the num
cal comparison is developed for the particular case oflm
periodicity, it applies to any wavelength.

We can now use known results concerning nonhomo
neous solutions of the Ginzburg-Landau equation.

IV. QUASISTATIC APPROXIMATION

In order to describe our method, we will first describe
particular family of stationary solutions of the on
dimensional CH model.

FIG. 4. The ratio between the mean length of the modulati
and the most amplified wavelengthlm52p/qm as a function of
time, for different noise levels from 10210 to 1022 ~the noise being
multiplied by 100 between each curve!. The shorter the nonlinea
plateau, the higher the noise level is. Each curve is obtained thro
an average over 100 runs. The other characteristics of the sim
tions are the same as for Fig. 3.
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For «,0, a stationary solution exists that relies on tw
homogenous phasesF56A2«/2,

F~x!5
Au«u

2
tanhS 2x

Au«u
D . ~3!

Such a monotonic solution allows a continuum descr
tion of the interface between the two stable phases. In f
this is a particular member of a one-parameter family
stationary solutions of the Ginzburg-Landau equation

«

2
F12F32¹2F50. ~4!

These solutions, the so-called soliton-lattice solutions@18#,
are

Fk,«~x!5kDSnS x

j
,kD with j5

1

D
5A2

k211

2«
, ~5!

where Sn(x,k) is the Jacobian elliptic function sine ampl
tude. This family of solutions is parametrized by« and the
moduluskP@0,1#. These solutions describe a periodic pa
tern of period

l54K~k!j, whereK~k!5E
0

p/2 dt

A12k2sin2t
~6!

is the complete Jacobian elliptic integral of the first kin
This family of profiles~or alternating interfaces! can be ob-
tain exactly as a periodic sum of single solitons and antis
tons ~or alternating interfaces! @18#

(
n

~21!n tanh@ps~x2n!#5
2k~s!K~s!

ps
Sn~x,k! with s

5
K~k!

K~k8!
and k82512k2.

The soliton-lattice solution can be associated with a m
crophase separation locally limited by the finite diffusion c
efficient. Fork51, Sn(x,1)5tanh(x), we recover the usua
interface solution; it is associated with a one-soliton solut
and corresponds to a macroscopic segregation. Note
K(1) diverges; the solution

F1,«~x!5
Au«u

2
tanhSAu«u

2
xD

is thus the limit of infinites, when the solitons are far apa
one each other~strong segregation regime!.

In the opposite limit (k→0, or weak segregation regime!
it describes a sinusoidal modulation

limk→0Fk,«~x!5kAu«u
2

sinSAu«u
2

xD .

s

gh
la-
8-5



ce

al
-
c-
e
v
e
nt

de

a

th
ed
at

o

ta

m

n

io

a
om
e

at
r-
nc

m
fir

well

la-
so-
de.
me,
y a
el-
en-

ion

-

e
of

be

f
ent

ess

he
al

ncy

ries
pe-
e

SIMON VILLAIN-GUILLOT AND CHRISTOPHE JOSSERAND PHYSICAL REVIEW E66, 036308 ~2002!
We now seek the evolution of the solutionF(x,t), ac-
cording to the CH noiseless dynamics, for a fixed redu
temperature«0:

]F

]t
~x,t !5]xxS «0

2
F12F32]xxF D . ~7!

Numerical simulations of that problem with a small initi
condition of periodicityl show the growth of the modula
tion at this periodicityl. As discussed in the preceding se
tion, such dynamics is unstable and would, in the presenc
noise for instance, loose its periodicity. However, we ha
shown that this can be neglected for low enough noise lev
and that this ‘‘unstable’’ growth of the pattern is releva
there.

The initial condition will then be taken as the sine mo
q52p/l,

F~x,t50!5n sin~qmaxx!,

where n is an arbitrary small amplitude. This profile is
member of the soliton-lattice family~for very smallk).

The core of the method we are using involves tracking
evolution of the periodic modulations through a simplifi
equation. For that purpose, we now make the ansatz th
first order, these modulations belong at any time to the tw
parameter family of solutionsFk,«* , with k and «* being
functions of time. Since the period is chosen to be cons
and equal tol, using Eqs.~5! and~6!, we find thatk and«*
are related to one another through

«* ~k!522~11k2!S 4K

l D 2

~8!

and we have eventually selected a one-parameter subfa
of solutions of given spatial periodicity~that we will call
C* (x,k) later on!,

C* ~x,k!5
4K~k!k

l
SnS 4K~k!x

l
,kD .

The dynamics ofF(x,t) is now reduced to the evolutio
of k(t) @or equivalently«* (t)]. Given a functionF @ob-
tained either from experimental data or numerical simulat
of Eq. ~7!# at timet, the ansatz assumes that there existsk so
that F(x,t);C* (x,k). «* (t) can be then interpreted as
fictitious temperature: it is the temperature extracted fr
the profile at a given time, using the correspondence betw
«* andk of Eq. ~8!. For instance, att50, the amplitude is
small and we find thatk(0)5nlm/2p and thus «* (0)
58p2/l2, different a priori from «0 @«* (0)5«0/2 in the
limit n→0, for l5lm]. In the same spirit, we expect that
the end of the growth, the ‘‘local temperature’’ of the inte
face coincides with the thermodynamic one, i.e., the que
temperature«0,

limt→`«* ~ t !5«0,

at which the dynamics ends. Somehow, we have assu
that the dynamics of the CH model can be projected at
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order onto a dynamics along the subfamilyC* (x,k), which
can be considered as an attractor of the solutions. This is
justified when a nonsinusoidal initial condition~of small am-
plitude! is chosen: we then observe, in numerical simu
tions, a short transient in the dynamics which drives the
lution towards the sine mode at roughly the same amplitu
However, for consistency, we need to check that at any ti
the solution of the CH mode can be well approximated b
member of the subfamily. For this purpose, we have dev
oped three different algorithms, taking advantage of the g
eral properties of the family of solutionsFk,« : either, k
can be deduced both from the amplitude of the oscillat
equal to 4kK(k)/l, or from the relation k51
2„@F(l/2,t)/F(l/4,t)#221…2; next, a straightforward com
putation relatesk to the ratio of the two first terms of the
Fourier transform ofF. We have observed that the thre
methods show in general similar results within an error
1%. However, the validity of the ansatz has still to
checked by comparing the initial functionF(x,t) with the
extrapolated functionC* (x,k) obtained by using one o
these three procedures. It is shown in Fig. 5 at two differ
times in a numerical solution of Eq.~7!; we observed that the
relative differences between the two functions is much l
than 0.01.

Moreover, an enlargement on the very early time of t
one-dimensional numerical simulation with small sinusoid
initial conditions, as presented in Fig. 6, shows a discrepa
between the different methods used to extractk from the
numerics. In fact using the ratio between the Fourier se
coefficients or the ratio between the amplitudes at two s
cific points of the profiles, gives for the very beginning of th
numerical simulation the valuek50, in agreement with the

1Note also that these two methods give estimations ofk that are so
close that they cannot be differentiated in Fig. 6.

FIG. 5. Comparison for timet5100 andt5140 between the
numerical solution of Eq.~7! ~circles! and the functionsC* (x,k),
with k extrapolated from the Fourier transform ofF(x,t). Initial
conditions are taken withn51024 andl52p/qm
8-6
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NONLINEAR GROWTH OF PERIODIC PATTERNS PHYSICAL REVIEW E66, 036308 ~2002!
statement of the initial condition.1 Indeed, these two method
account for the shape of the profile, which has been ta
initially as a sine mode, instead of a Sn mode.

However, using the third method, which depends on
amplitude, leads to a small but finitek50.02 due to the smal
but finite value ofn. Even if the distortion from a sinusoida
function associated with this finite Jacobi modulus is sm
~the relative change in the natural period and in the shap
the function is of order 1024), one nevertheless observes th
the dynamics of the system is such that, within a short tim
the three methods give results that are again in agreem
There is a short inflation period during which there is
change in the shape of the profile and where the shoulde
the initial sinusoidal inflate. That is, there exists a very sh
stage during which the system goes very rapidly to a s
very close to an element of the family of the soliton latti
C* (x,k).

V. NONLINEAR GROWTH

Although the evolution ofk(t) can be extracted from di
rect numerical simulations of Eq.~7!, as shown above, th
aim of the rest of this work is to show thatk(t) can be
deduced via an explicit ordinary differential equation. The
fore, in what follows, we will seek the solution of Eq.~7! in
the form

F~x,t !5C* „x,k~ t !…1hw~x,t !, ~9!

where w accounts for high-order correction terms toC* ,
while the ‘‘ansatz’’ assumes thath!1 ~we consider«0 and
lm of order 1!.

FIG. 6. ~Color online only! Comparison for the very early time
of the dynamics between thek(t) predicted by the three differen
methods. The ratio between the Fourier series coefficients~circles!
and the ratio between the amplitude atF(lm/2,t) and F(lm/4,t)
~gray line! both start atk50 and almost coincide. On the contrar
the third method, which uses the amplitude of the profile, st
from a finite value. Nevertheless, the three methods merge with
short time, indicating the ‘‘affinity’’ of the CH dynamics for soliton
lattice solutions.
03630
n

e

ll
of
t
,

nt.

of
rt
te

-

To describe the evolution of the modulusk(t), or equiva-
lently the dynamics for«* (t), we will use the so-called solu
bility condition technique. Substituting formula~9! in the
Cahn-Hilliard equation~7!, gives the following dynamics:

]F

]t
~x,t !5

]C*

]k

dk

dt
1h

]

]t
w5

]2

]x2 F«0

2
C* 12C* 32¹2C*

1hS «0

2
w16C* 2w2¹2w D G ,

where we have kept only the lowest-order terms in the p
turbation. AsC* „x,k(t)… satisfies the relation

«* ~k!C* 14C* 322¹2C* 50,

we then have the following dynamics:

]C*

]k

dk

dt
1

~«* 2«0!

2

]2C*

]x2
1h

]

]t
w

5h
]2

]x2 S «0

2
w16C* 2w2¹2w D .

The balance of the different terms gives the small para
eter of the expansionh;«* 2«0; we obtaindk/dt;h and
] tw;hw. Neglecting the terms of orderh2 in the preceding
equation, we end up solving the linear system

]2

]x2
~Lw!5

]C*

]k

dk

dt
1~«* 2«0!

]2

]x2
C* .

Here, L is the linearized CH operatorLw5h@(«* /2)
16C* 22¹2#w. Strictly speaking, this analysis is valid onl
for «* ;«0; however, it is a classical assumption of the so
bility condition ~confirmed below by the numerical resul
presented in Fig. 7! to expand it for the whole dynamics.

A necessary condition for the solution is that the righ
hand side of the system is orthogonal to the kernel of
adjoint operator (]x2L)†. The Goldstone mode]kFk,«* , for
«5«* 5const, is clearly an element of Ker(L †), and if we
consider the distributionx(x,t), such that (]2/]x2)x(x,t)
5Fk,«* (x), then we have]kxPKer@(]x2L)†#.2 Thus, using
the scalar productŝu& over the periodl, defined as

^ f ug&5
1

lE2l/2

l/2

f ~x!g~x!dx,

we obtain the desired equation fordk/dt,

2Note that the partial derivative with respect tok is made with«*
as constant, since we are interested in a member of Ker(L †), lin-
earized CH operator for«* .

ts
a
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^]kxu]kC* &
dk

dt
5

~«02«* !

2
^]kxu]x2Fk,«* &

54~«02«* !
kK~k!

l2~11k2!
S 2E~k!

12k2
2K~k!D ,

~10!

whereE(k)5*0
p/2A12k2sin2x dx is the complete Jacobi el

liptic integral of the second kind. The lhs can be expres
usingc(x,t), defined as (]/]x)c5C* , which reads

c~x,t !5 lnFDnS x

j
,kD2kCnS x

j
,kD G2

1

2
ln~12k2!.

Cn and Dn are the Jacobi elliptic function cosine and de
amplitudes, respectively. Then, noting that

^]kxu]kCk,«* &52^]kcu]kc&52I ~k!,

where I (k) is independent ofl. Finally, Eq. ~10! can be
recast as the following explicit ordinary differential equati
for k(t):

dk

dt
524F«012~11k2!S 4K~k!

l D 2G kK~k!

l2I ~k!~11k2!

3S 2E~k!

12k2
2K~k!D . ~11!

FIG. 7. ~Color online only! Comparison between the solution o
the ordinary differential equation~11! for the modulusk(t) ~black
line! and the modulus extracted from the full CH dynamics~circles!
with the same initial conditionk(0)5231024, for l5lm . The
dynamics converges toks in both cases for large time. The ins
shows the exponential convergence of both curves in the asymp
regime, where the solubility condition is valid; it compares w

with ks2k(t);e2«0
2t/8. In addition, far fromks , the exponential

growth for small timek(t);e2«0
2t/16 is also retrieved by Eq.~11!.
03630
d

a

In the limit k→0, that is, for early times, Eq.~11! be-
comes, with the wave numberq52p/l associated to the
periodl

dk

dt
52q2S «0

2
1q2D k5s~q!k.

Sincek is proportional to the amplitude of the sine mod
of wave numberq, we observe that we retrieve the line
theory of the CH model in that limit.

The rhs of Eq.~11! is in fact proportional to«02«* , so
that the dynamics ends when the fictitious temperat
reaches the thermodynamic one«0; this occurs fork5ks

which satisfies 32(11ks
2)K(ks)

252«0l2. For l5lm , we
obtain ks

250.471 941. This corresponds to the end of t
nonlinear growth@in Fig. 1 ~c!# and the value ofks associ-
ated with this steady state is well retrieved numerically
the three methods explained above. Thus, the asymp
steady state solution of Eq.~7! for a given period is
limt→`F(x,t)5C* (x,ks). However, no analytic solutions
of Eq. ~11! have been found, and we need to solve it nume
cally. Figure 7 compares the solution of Eq.~11! with the
dynamics ofk extracted by the Fourier method from the fu
CH evolution, for the periodl5lm , the fastest growing
mode. It shows a good agreement between the two curve
particular, both limitst→0 andt→` are well captured; thus
equation~11! remains valid even fork far from ks .

VI. CONCLUSION

We have shown that the choice of an ansatz within
soliton-lattice family allows a reliable description of th
growth of a periodic pattern in the noiseless Cahn-Hillia
equation. Contrary to Ref.@19#, our ansatz relies on the hy
pothesis that during the first two stages of the dynamics,
periodicity of the order parameter remains constant. In t
sense, it is an adiabatic ansatz. The validity of these assu
tions has been investigated in detail and checked numeric
~see Fig. 5!. It enables one to model the nonlinear grow
starting with spatial random initial conditions and predic
the stationary profileCks

* , which ends this nonlinear growth

Although this profile might not be observable in a usu
phase transition due to the presence of noise@17#, we claim
that this approach should be valid when the noise is l
enough, which is the case when the quench is achieve
low temperatures. We expect this approach to have a par
lar pertinence for axial segregation in rotating drums@20#,
where the dynamics ends after the second stage.

The use of the solubility technique combined with t
choice of an adiabatic ansatz might be generalized to
study of other non linear dynamics. For instance, spino
decomposition in superfluid Helium or Bose condensate
been argued to be described by a cubic-quintic nonlin
equation@21#; in this particular case, one would first need
retrieve a relevant solitonlike family of solutions alon
which to compute the adiabatic dynamics. The same diffic
ties would arise when the method is adapted to higher sp
dimensions.

Finally, this approach could be used to explore the s

tic
8-8
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similar scenario for coalescence suggested by AFM exp
ments for spinodal decomposition in mixtures of block c
polymers, depicted in Ref.@4#, starting with the previous
stationary distribution as initial conditions. The only chan
will be in the use of a family of solutions of growing per
odicity l t , which would also be a slow variable of the pos
tion, since the coalescence is controlled by local interacti
of the pattern@22#. The goal in that case would be to obta
d

D.

.

s.

03630
ri-
-

s

a differential equation forl, the order parameter with th
same technique. However, these questions are postpon
future studies.
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